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Abstract. We consider the Ising spin-glass on a lattice with finite connectivity 
(= M + 1). Using the recent method of large connectivity expansion, the free ener- 
gies at finite temperatures are evaluated numerically at first-step replica symmetry 
breaking (RSB). The 1/M expansion at  finite temperature diverges as T -+ 0 as in the 
replica symmetric case but is well behaved for a larger range. The l/J;i? expansion 
at zero temperature is also calculated at higher steps of RSB. Expression for the free- 
energy expansion is derived for an arbitrary step of RSB up to order 1/M. Explicit 
numerical values a t  second-step RSB are obtained. From our results, we speculate 
that the divergence in the finite-temperature expansion might disappear for the exact 
infinite-step RSB solution. We also compare our results with the simulation results 
of graph bipartitioning. 

1. Introduction 

Ever since Parisi proposed his replica symmetry breaking (RSB) solution [l] to  the 
Sherrington-Kirkpatrick [2] (SK) infinite range spin-glass model, there have been many 
efforts [3] to  extend the theory for the more realistic short-range Bravais lattices. 
While there is a general agreement on the Parisi RSB solution to  the infinte range 
spin-glass, there are many controversies and questions about whether the features in 
the Parisi solution, like the coexistence of many thermodynamic states in the spin-glass 
phase, remain correct for the short-range real spin-glasses. Recently, much interest 
has been focused on the theory of spin-glasses on lattices with finite connectivity [4- 
101. These systems are closer in nature to  the real spin-glasses because of the finite 
valence of the Bravais lattices. Moreover, spin-glasses on such random lattices with 
finite connectivity are directly related to some well known optimisation problems like 
graph colouring [8] and partitioning [6-91. 

In this paper, we consider random lattices with fixed connectivity equal to  M + 1, 
i.e. each site is connected to  M + 1 other sites. The spin-glass Hamiltonian is given 
by 

(4 

where ui = *l is the Ising spin a t  the i th site and the bonds Jjj can be positve or 
negative and obey the independent distribution p ( J i j ) .  Goldschmidt and DeDomini- 
cis [11,12] recently proposed a way to  construct an RSB solut,ion and presented the 

0305-4470/93/143329+12%Q3.50 @ 1990 IOP Publishjng Ltd 3329 



3330 Pik-Yin Lai and Y Y Goldschmidl 

first-step RSB solution for such systems. The method involved a systematic expansion 
in inverse powers of the connectivity. Following their method, we present new first- 
step RSB numerical results for the free energy at  finite temperatures in section 2.  In 
section 3,  we demonstrate how t o  construct large connectivity expansion solutions at 
zero temperature for higher step RSB and give explicit results for second-step RSB. 

2. Finite temperatures and the first-step RSB results 

The details of the expansion method are presented in [12], we will just outline the 
scheme here. The useful quantity in the large connectivity expansion scheme is the 
global order parameter [13] g( { U = } )  satisfying the recursion relation 

where a = 1 , 2 . .  . n is the replica index, the 7 are Ising spin variables and ultimately 
the limit n + 0 is taken. The order parameters q a l , , , a ,  is given by 

qal...a, = n g M ( { u a ) ) u a l  * *  * u a , / n g M ( { u a I ) .  (3) 

The free-energy density a t  any temperature has been shown [ la]  to  be 

The expansion method works for general p ( J ) ,  but for simplicity p ( J )  is chosen to  be 

6 ( J  - J,) + a(J + J,) 
2 P ( J )  = ( 5 )  

g? can be expanded in powers of 1/M for large values of M with the scaling J, = 
J/* 

Substituting these expressions into the free-energy density, the latter can be expanded 
as 

P f = P f o + M + O  Pfl (;2) - 
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with 
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(9) 

where the limit n + 0 is understood. Up to  this order, the free energy depends only 
on the not on the q( ' )  and thus for convenience the superscript (O)  will be dropped 
in what follows in this section. Also the q with higher numbers of replica indices will 
only appear in higher orders in 1/M. 

It has been shown that the replica symmetric (RS) solution is unstable [13] below 
the spin-glass transition temperature and first-step RSB has been consider ed in [ll, 121. 
The RSB scheme is the same as Parisi's case of the SK model. For first-step RSB, the 
replica index a is parametrised as a = ( K ,  y)  where Ii' = 1 , 2 , .  . . , n / n  is the box 
label and y = 1 , 2 , .  . . , m is the label inside a box. The values of q a t , , , , ,  are classified 
according to  the number of replica indices in the same box. For qat=,,  the possible 
values are 4 2  and Qll .  For Qc11c12c13a,I the possible values are q4, q Z 2 ,  431, q z l l  and q l l l l .  
Higher steps of RSB are described in next section. The expressions for f, and f l  for 
first-step RSB have been given in [12] 

x 2  pfo = - ~ ( 1  + mq:, + (1 - m)qi - 2q2) - In2 - 1 / Dr In / Dy cosh"' 4 (11) m 

- 4 4 m  - l ) (m  -2)q31q,q1 1 +4m2( n - 1 )4211 (QzQ11+2q?1) - 6m3q1 111 8 1 1  

(12) 

where Dz 3 (dr/&) exp(-r2/2) and 4 = X z J p T ; +  A y J m .  The q satisfy the 
saddle point equations (3), and for first-step RSB they read 

s Dy cosh"' 4 tanh' 4 
s Dy cosh"' 4 q 2 =  J D ~  

J Dz (s Dy coshm 4 tanh 4)' 
Qll  = J Dy cosh"' 4 
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s Dy coshm 4 tanh4 4 
s Dy coshm 4 

J (s Dy coshm 4 tanh2 4)' 

q4 = / Dz 

s Dy coshm 4 422 = Dz 

(s Dy coshm 4 tanh3 4) (s Dy coshm 4 tanh 4) 
(s Dy coshm 4) (13e) 

(13f) 

431 = J DZ 

(s Dy coshm 4 tanh2 4) (s Dy coshm 4 tanh 4)' 
(s Dy coshm 4) q 2 1 1 =  J D ~  

coshm 4 tanh 4 
s Dy coshm 4 Ql l l l  = (139) 

After solving q l l ,  qz and m from the equations a fo /Oq l l  = afo/8q2 = af,/am = 0, 
which are obtained from extremising f,, q4, q22,  q311 q211,  q l l l l  and thus the free-energy 
density can be evaluated. The integrals are numerically evaluated using Hermite 
quadratures up to  a hundred points. The  RS case can be recovered by setting q l l  = q2 
and the results agree with those presented in [ l l ]  and [12]. The new results for RSB 
at  finite temperatures are given here. Figure 1 shows the variation of the scaled 
free-energy density as a function of the scaled temperature with and without RSB. 
The rescaled free energy f/J,m is well behaved up to T / J , f i  2: 0.2 for the RS 
case. I t  appears t o  diverge as the temperature is further lowered. When first-step 
RSB is introduced, the free energy is well behaved up to  T / J , m  N 0.1 and diverges 
afterwards. This divergence is because of the fact that  the expansion parameter should 
be in powers of 1/@ instead of 1/M at  T = 0. Nevertheless, the extrapolated zero 
temperature result agrees with the result obtained from the expansion directly a t  
5" = 0. It should be noticed that when first-step RSB is included, the free energy is 
well behaved over a larger region closer to  T = 0. This result may suggest that  this 
divergent behaviour of the 1/M expansion may disappear for the presumably exact 
solution of infinite steps of RSB. If this is actually true, the coefficient of 1/a in the 

-095 - 

Figure 1. Rescaled free-energy density against the rescaled temperature in units 
of JO for M = 00 (sK model) and M = 10 for no RS breaking ( ( a )  and ( b ) )  and 
first-step RSB ( ( c )  and ( d ) ) .  The broken line is the extrpolation to zero temperature. 
The values obtained directly at T = 0 is encircled. 
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expansion a t  T = 0 should go to  zero when the RSB step goes to  infinity. Higher steps 
of RSB a t  zero temperature will be discussed in next section and will tend t o  support 
this scenario. 

3. Zero temperature and higher-step RSB 

For the zero temperature case, it is useful t o  define 

Yn({za}) E g n ( { a a / P l ) .  (14) 

As shown in [12], 1 / a  is the natural parameter to  expand for p -, 00. The  details 
of the expansion and the RS and first-step RSB results were presented in [12]. For 
higher RSB, say pth-step RSB, the replica index o is parametrised [ l ,  141 as follows: 

10) = 1 , 2 , .  . . , mp-l/mp . (16) 

The rule is that  each new step introduces a new partitioning of the elements of 
the previous step. For example, for qala,, a t  first-step, one has 

( Q l Q Z )  = (11)(2) (17) 

At the second-step, the (11) cannot be further partitioned and remains the same while 
the (2) becomes 

The global order parameter yn({za}) depends on the replicated spins through the 
quantity atK} E E, b{K),7.  In what follows, the curly brackets in { K }  are dropped 
for convenience. As P -+ 00, ml,  . . . , mp -+ 0 such that the pm are finite. We define 

pr E lim Pm, 
P" 

and denote pp E p .  yn now satisfies the relation 
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where 

We introduce for convenience 

The  (. . .) is also expanded as 

Following similar steps as in [12], the free-energy density is expanded in powers of 
1 / a .  For an arbitrary step of RSB, the result is 

f l  f2 1 
= fo + - + - +U(- f aJo 4ii M M a )  

where 

and 

( 2 5 )  
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+ 3p3 ('K1 'K,)O ('K3'Kd )O ('K1 'Kg ' K 3  ' K I  )o  
( K I K ~ K ~ K I )  

- 3p3 ( aK1aKg) l  ( ~ ~ ~ ~ ~ ( ) I ( ~ X ~ ~ ~ ~ ~ ~ ~ U ~ ~ ) O ]  * (28) 
( K i  K a K 3 K 4 )  

The  limits n -+ 0 and + 00 are understood. Notice tha t  the quantities tha t  involve a 
single index I< are independent of I<. Also ( u K u K , )  and ( u K l u K a u K 3 u K I )  correspond 
to and  qa1a2a3a4 1 respectively. (uKaK,J1 (i.e. qil,)aa) can be expressed in terms 
of the  quantities of leading orders and thus one need only comput,e the (. . .)o averages. 
Finally the  parameters p should also be  expanded 

The  p(O) and ( u K u K , ) ,  are evaluated from the extremisation condition of fo. The  fact 
tha t  pr # p$.O) introduces a correction when f is evaluated with p$.O). This  correction 
can be calculated and expressed in terms of the derivatives of f l  and fo evaluated at 
pio)  and contributes to the order 1/M term in the free energy. 

For actual numerical evaluation, we considered second-step RSB. In this case, 
= 1 at zero temperature, only q( 9 and q l l  are relevant and for simplicity they are 

denoted by q2 and q l l  respectively if no confusion arises. Similarly, for the q with four 
q(3 11 
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indices, only those with the indices (,~,,), (liil), (l:il), (f;il) and (1111) enter and 
again for simplicity they are denoted by (4), (22), (31), (211) and ( l l l l ) ,  respectively. 
The free-energy density expansion is then obtained: 

where q p l / p z  and 0 u JT 1 - q + y {- q2 + zm; the averages (. . .)o 
can be expressed in terms of nested integra s. For example 

where 

These averages a t  second-step RSB are listed in the appendix. f l  is still given by (27). 
The  expression of fz is too long and will be given in the appendix. 

Firstly, q i : ) ,  q p ) ,  ~ ‘ ( 1 0 )  and p f )  are given by the solution of the 4 x 4  nonlinear 

are evaluated using the integral expressions in the appendix. q c i  is then evaluated. 
The correction due to  the fact that pr # p io )  is taken care of. Finally, the numerical 
values of fo, f l  and fz can then be computed. By setting qz = q l l ,  the first-step RSB 
expressions are recovered and we also confirm the numerical values given in [12]. Our 
result with second-step RSB is 

equations which are obtained from extremising fo. Then qapTa ( 0 )  and other averages 

0.0026 0.434 1 = -0.7636 + - - - + O(- f aJo a M  M a ) .  

Table 1 summarises the results of RS and RSB a t  first and second steps. Our leading 
term in the free energy agrees with Parisi’s result [l] for the SK model. The coefficient 
of 1/@ (i.e. f l )  decreases as a higher step of RSB is used and indeed is quite close to 
zero in our second-step result. We speculate that as the step of RSB goes to  infinity, 
fl  - 0. The divergence as T --$ 0 in the 1/M expansion at  finite temperature may be 
an artifact of the finite step RSB. However, we are still lacking a rigorous proof. 

Table 1. Coefficients of the free-energy expansion at zero temperature. 

Solution fo fl f2 

RS -0.798 0.106 -0.437 
First RSB -0.765 0.010 -0.390 
Second RSB -0.7636 0.0026 -0.434 



R e p l i c a  symmetry breakzng  of the Ising s p i n - g l a s s  3337 

Figure 2. Rescded ground state energy against M .  Dashed line is the empirical 
results fromequation (33). Full curves are 1/a expansion results with no, first-step 
and second-step RSB. 

Finally our results can be compared with the numerical simulation [7] results of 
the ground state energy. Figure 2 summarises the various results. The simulation 
results, denoted by the broken curve, fits the empirical formula 

with c = 1.5266 in the range 2 < M < 20. Our second-step RSB results up to  
order 1 / M  start  to  show improvement over the first-step results (i.e. closer to  the 
empirical values) for M 2 60.  For moderate values of M (10 5 M 5 6 0 ) ,  since 
the second leading coefficient ( f l )  is very close to  zero, higher orders needed t o  be 
included. One way to  include some of the higher-order terms is instead of calculating 

p; ' ) /d%) .  By doing so, our second-step RSB results in the 10 5 M 5 60 range are 
improved and are slightly closer to  the empircal results than the first-step results. 
(A similar procedure performed on the first-step results show negligible changes to  
the free energy.) However, one should bear in mind that the difference between the 
first-step and second-step results are about 0.5% for moderate values of M ,  which is 
of the same order as the uncertainties in fitting the simulation results to the empirical 
formula. 

the free energy by f (pr = pSo)) + corrections 0 ( 1 / M ) ,  to  compute f(pr = pr (0) + 

4. Conclusion 

The large connectivity expansion method with RsB is used to obtain the free energies 
of the Ising spin-glass on lattices with fixed and finite valence. At finite temperatures, 
the free energy as a function of temperature is calculated a t  first-step RSB by 1 / M  
expansion. As in the RS case, the free energy appears to  diverge when T ---* 0,  but 
is well behaved over a larger range closer to  T = 0. Higher RSB are discussed for 
the 1/& expansion at T = 0. Expression for the free-energy expansion is derived 
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for an arbitrary step of RSB. Numerical results are obtained at second-step RSB. The 
coefficient of 1 / a  is close to zero suggesting that it might go to zero at infinite-step 
of RSB and thus the apparent divergence in the 1/M expansion at  finite temperature 
might disappear in the exact infinite-step RSB solution. The remaining deviation from 
numerical simulations of graph partitioning are probably due in part to  higher order 
1 / a  corrections and in part to  inaccuracies in the simulations themselves which 
tend to  overestimate the cost of the partition. 
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Appendix 

The expression of f2 a t  the second step of RSB is 
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The expressions for the leading order averages (. . .)o a t  second RSB step are 
given below. (bK'bKf)O, ( ~ ~ b K f i S ~ , ) ~  and ( u ~ ~ u ~ ~ ~ K ~ ) ~  are denoted by B ,  S and 

A ,  respectively, and ~ ( y ,  z )  E yd-+ z@, c1 G l/d- and 

cz z I /  J=. 
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x / DY (/ Du ep1'Iy-'  (/ Du sgn ( f?)eplel)] 

x / DY (/ Du ep le l )nJ  (/ Du sgn ( f?)epl'I)-"] 

Note that A denotes 
the same partition ( A l ,  otherwise) and A,, # AI2.  

A,, stands for the case where I<, and A', are in 
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